A Negative Selection Algorithm Based on Email Classification Techniques

نویسندگان

  • Victor. Onomza Waziri
  • Ismaila Idris
  • Mohammed Bashir Abdullahi
  • Audu Isah
چکیده

Aiming to develop an immune based system, the negative selection algorithm aid in solving complex problems in spam detection. This is been achieve by distinguishing spam from non-spam (self from non-self). In this paper, we propose an optimized technique for e-mail classification. This is done by distinguishing the characteristics of self and non-self that is been acquired from trained data set. These extracted features of self and non-self are then combined to make a single detector, therefore reducing the false rate. (Non-self that were wrongly classified as self). The result that will be acquired in this paper will demonstrate the effectiveness of this technique in decreasing false rate. KeywordsNegative selection; E-mail Classification; Algorithm; Self, Non-Self, Artificial Immune System, Classification accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Solution to View Management to Build a Data Warehouse

Several techniques exist to select and materialize a proper set of data in a suitable structure that manage the queries submitted to the online analytical processing systems. These techniques are called view management techniques, which consist of three research areas: 1) view selection to materialize, 2) query processing and rewriting using the materialized views, and 3) maintaining materializ...

متن کامل

Negative Selection Based Data Classification with Flexible Boundaries

One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...

متن کامل

A Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection

K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...

متن کامل

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013